knowledge discovery - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

knowledge discovery - translation to ρωσικά

PROCESS OF DISCOVERING PATTERNS IN LARGE DATA SETS USING COMPUTATIONAL METHODS AT THE INTERSECTION OF STATISTICS, DATABASE SYSTEMS, OR MACHINE LEARNING
Pattern mining; Pattern Mining; Knowledge Discovery in Databases; Data Mining; Datamining; Web mining; Information-mining; Data-mining; Data miner; Knowledge mining; Web Mining; Web usage mining; DATA MINING; Usage mining; Web data mining; Knowledge discovery in databases; Programming Collective Intelligence; Subject-based data mining; Information mining; Web content mining; Visual Data Mining; Artificial Intelligence in Data Mining; User:Netra Nahar/Artificial Intelligence in Data Mining; Predictive software; Knowledge discovering in databases; Datamine; Data mining system; Data discovery; Data mine; Web log mining; Data Discovery; List of data mining software; Data mined; Privacy issues in data mining; Privacy issues with data mining; Privacy concerns regarding data mining; Data miners
  • An example of data produced by [[data dredging]] through a bot operated by statistician Tyler Vigen, apparently showing a close link between the best word winning a spelling bee competition and the number of people in the United States killed by venomous spiders.

knowledge discovery         
CREATION OF KNOWLEDGE FROM STRUCTURED AND UNSTRUCTURED SOURCES
Knowledge discovery; Ontology-based information extraction; List of knowledge extraction tools; List of tools for knowledge extraction; Semantic knowledge extraction

общая лексика

обнаружение [выявление] знаний

нахождение скрытых структур (patterns) в хранилищах данных, которые преобразуют данные в информацию

Смотрите также

data mining; Data Warehouse

data mining         

общая лексика

извлечение информации [из данных], добыча данных

технология анализа хранилищ данных, базирующаяся на методах ИИ и инструментах поддержки принятия решений. В частности, сюда входит нахождение трендов и коммерчески полезных зависимостей

tacit knowledge         
KNOWLEDGE THAT IS DIFFICULT TO TRANSFER TO ANOTHER PERSON BY MEANS OF WRITING IT DOWN OR VERBALIZING IT
Tacit Knowledge; Tacit; Tacit knowing; Embodied knowledge; Implicit knowledge
подразумеваемое знание; знания индивида, позволяющие вступать в социальные отношения, хотя он может и не уметь четко формулировать эти знания.

Ορισμός

ЛОНДОНСКОЕ КОРОЛЕВСКОЕ ОБЩЕСТВО
(The Royal Society , London), ведущее научное общество Великобритании, один из старейших научных центров Европы. Основано в 1660. Среди инициаторов Р. Бойль. В числе первых руководителей. - Р. Гук, К. Рен, И. Ньютон. Св. 1 тыс. членов. Издает "Философские записки" - один из старейших научных журналов мира (с 1665).

Βικιπαίδεια

Data mining

Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.

The term "data mining" is a misnomer because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence (e.g., machine learning) and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java (which covers mostly machine learning material) was originally to be named Practical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis and analytics—or, when referring to actual methods, artificial intelligence and machine learning—are more appropriate.

The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, although they do belong to the overall KDD process as additional steps.

The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large volume of data.

The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.

Παραδείγματα από το σώμα κειμένου για knowledge discovery
1. Understanding the relationships among people, organizations, places, and things – using social–behavior analysis and other techniques – is essential to going beyond mere data–mining to comprehensive "knowledge discovery in databases," Dr.
2. "In order to increase knowledge, discovery, economic prosperity, and to enhance the national security, the United States must have robust, effective, and efficient space capabilities." The policy says that space systems should have rights of passage without interference, and that the United States would view any deliberate interference with its space systems as an infringement on its rights.
3. As part of the first revision of U.S. space policy in nearly 10 years, the policy also said the United States would oppose the development of treaties or other restrictions that seek to prohibit or limit U.S. access to or use of space. Freedom of action in space is as important to the United States as air power and sea power,‘‘ the policy said. In order to increase knowledge, discovery, economic prosperity and to enhance the national security, the United States must have robust, effective and efficient space capabilities.‘‘ Precisely what drove China to act now remains a mystery.
Μετάφραση του &#39knowledge discovery&#39 σε Ρωσικά